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Abstract. The planar generalized Yee (PGY) algorithm is an extension of the generalized Yee-
algorithm and the discrete surface integral (DSI) met}lods, which are based on explicit time-
marching solutions of Maxwell’s equations. Specifically, by exploiting the planar symmetries of
printed microwave circuit devices, great savings in both CPU time and tnemory can be achieved.
Since the PGY algorithm is an explicit method, it has a IIigh degree of parallelism. To this end, a
highly scalable parallel algorithm based on a spatial decomposition of the general unstructured
mesh is presented. Two spatial decompc)sitions  are compared, the recursive inertia partitioning
(RIP) algorithm and the Greedy algorithm. The Greedy algorithm provides optimal load balance,
whereas the RIP algorithm more effectively minimizes shared bc)undary interface lengths.
Through numerical example, it is demonstrated that the Greedy algorithm provides superior
speedups. It is also demonstrated that the parallel PGY algorithm is a highly scalable algorithm.
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1. Introduction

The gencra]ized Yce-algorithm [1, 2], and the Discre[c Surface lntcgral (DS1) algorithm [31

have proven to be highly robust and accurate techniques for the analysis of microwave circuit

devices. These methods arc explicit time-marching schemes derived from the discretization of

Ampere’s

projected

irregular.

and Faraday’s laws in their integral form ~1-~1. TO t}lis end, the vector  fields are

onto the edges of a dual, staggered grid which is assumed to be unstructured and

This is in contrast to the traditional finite difference time-domain (FI~TIl) nlethod  [41

which is based on regular and orthogonal grids, or the non-orthogonal FDTD method [s-~],

which is based on irregular structured grids. The advantage of using unstructured grids,  iis that k

highly complex geometries can be accurately modeled with the aide of automatic grid generation

techniques. Unfortunately, a disadvantage of generalized Yec and 11S1 algorithms is that the

numerical grid must be stored. Moreover, the sparse matrices associated with them must also be

stored [1, 2], greatly limiting, the size of the problem which can be solved.

The memory requirements of the generalized Yee-algorithm  and the DSI algorithm can be

greatly relaxed by exploiting symmetries in the model. A large class of microwave circuits can

be said to have pfmar symmetry, which is recc)gnizcd for three-dimensional geometries that can

be uniquely described by a projection onto a two-dimensional plane. It was shown in [9] that by

exploiting this symmetry, (he entire three-dimensional circuit geometry can then be described

uniquely by a two-dimensional grid. Subsequently, the grid used to analyze the three-

dimensional problen~  can be described by an unstructured two-dimensional grid in a transverse

plane and as a regular gricl in the third-dimension. Thus only the two-dimensional grid need be

stored. Furthermore, it is shown below that the sparse update matrices of this planar generalized

Yee- (PGY) algorithm need only be constructed for the two-dimensional grid. This greatly

relaxes the memory recluirements  of the algorithm to the exlent  that it is actually as memory

efficient as the FDTD algorithm.

The PGY-algorithn~  is an efficient computational method, however, since it is based on a

volume discretization  the computational demand can increase substantially with the size of the
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problem geometry. For example, the number of floating point operations per time iteration will

increase as O(N), where N is the number of unknowns in the discrete volume. However, the

number of time iterations rwquired to reach a steady-state will also increase as O(~N ) (the

number of time iterations will be inversely proportional to the minimum edge length in the model

as well). The analysis of single component circuits can typically be modeled on conventional

workstations or sequential computers in reasonable amounts of time. On the other hand, the

analysis of l~lt]lti-c(~lll~>oncnt  circuits requires much greater resources.

It is becoming much more evident that distributed parallel computing is a highly cost effective

means of achieving supercomputing  performance. With the rapid increase in computational

power of RISC microprocessors, as well as the increase in speeds of local area networks, highly

cost effective supercomputing  can be achieved through loosely coupled distributed parallel

systems using message passing protocols such as PVM (Parallel Virtual Machine). Tightly

coupled distributed memory multiprocessc)r computers, such as the 1 ntel I’aragon, the Cray T3D,

the IBM SP2, or the Convex SPPI 000, will provide higher performance, principally due to the

fact of having faster dedicated networks interconnecting processors with greatly reduced latency

times. These arc})i  tectures  have already demonstrated the potential of 100 GFLOPS performance

for practical scientific applications.

The PGY-algorithnl  is extremely well suited for nigh performance distributed

computing. Since the method is explicit, the kernel of the algorithm consists of a

memory

series of

matrix-vector products. These operations are conveniently parallelized  using a spatial

decomposition of the unstructured mesh. It is shown tha[ by treating the matrix as a subassembly

of matrices, where each sub matrix is associated with each spatial subdomain, interprocessor

communication can be minimized, resulting in a highly scalable parallel algorithm. Furthertnore,

due to the regularity of the grid along the vertical direction, vector/pipclining can be exploited to

further increase the floating poin(

The focus of this paper is on

algorithm OJI high performance

speed of the algorithm,

the development of aJl efficient implementation of the PGY-

parallel computers. Section 11 presents the PGY-algorithm.
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Section 111 discusses the parallelism inherent within the algorithm, and presents an efficient

parallel algorithm based on a spatial decomposition of the three-dimensional mesh. Section IV

presents the inherent vectorism in the PGY-algorithm,  and the advantages of exploiting the

vector/pipelining  of RISC based parallel computers. l:inally, some numerical examples are

presented in Sccticm V, which illustrate the efficiency and the scalability of the parallel PGY-

algorithm.

11. ‘Ike Planar (lcneralizcct  Yec.A1gorithm

The planar ,gCneralized Yee-algorithm is based on a direct solution of the time-dependent

Maxwell’s equaticms  in their integral form. ‘lXhe electric and magnetic field intensities are

initially normalized as

Z=zv{qo
(1)

where q. is the characteristic wave impedance in free space. I;araday’s law and Anlpkre’s law

arc then expressed in their integral form as

(2)

(3)

where co is the free space velocity of light, pr and &r are the relative pertneability  and

permittivity,  respectively, and o is the absolute conductivity. The principle advantage of this

normalization is that the magnitudes of Z and h will be of the same order, reducing rounding

error. Furthermore, it is much more convenient to work with the relative pennittivity  and

pcrmeabilities rather than their absolute values.

Faraday’s and Ampkre’s laws are expressed in a discrete form by mapping E and A into a

discrete three-ditnensional  space. The mapping consists of projecting the vector fields onto the

edges of a dual grid, composed of two st trggercd grids, referred to as the primary and secondary

grids. 13ach grid is a three-dimensional grid that is described as being regular along the vertical

direction (assumed to be the z-direction), and is unstructured in the horizontal direction.



Parallel PGY-Algorilhnl,  S, Gciin~ & F. Lim~ 5—.— _—. — ———---—

Ccmccptually,  this gjrid  can be generated by extruding a two-dimensional unstructured grid in the

verlical  clircction,  and segmenting it at discrete heights, as illustrated in Fig. 1. The secondary

grid is staggered within the primary grid such that its ver(ices  lie at the centroids of the primary

grid cells, and the edges of the secondary grid connect the centroids by passing through the faces

of the primary grid.

The electric and magnetic fields are then decomposed into orthogonal components

AZ=zl+zez,

ti=+i-ihz. (4)

Subsequently, the transverse electric and magnetic fields are mapped onto the horizontal edges of

the primary and secondary grids, respectively. Likewise, the vertical electric and magnetic fields

are mapped onto the vertical edges of the primary and secondary grids, respectively. The vector

fields are assumed to be constant along their respective. edge lengths, as well as over the dual

face through which they pass.

Based  on the above discretization,

discrete space. The time derivative is

Faraday’s and An~p&e’s laws are. then mapped into the

then approximated using a central difference expression,

which is second-order accurate if the fields are staggered in time. ~’his leads to [9]

h;+’(k)  = h; (k)-
C(it  1

[ 1~~~j $e~i(l:)~i
P

(5)

3

[ (

crm(k+;)  oJk+jr)O

)

1n+ -
e,m2(k+  ~)= _

n+-

e,m  2 (k + -~)
2 Codf 2

(7)
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where dt and bl are the flux densities in the transverse plane, At is

time index, k is the index along z, AP and AS arc the areas of the

faces, respectively, NPi and N,$j are the number of edges  bounding

(8)

the. time increment, n is the

primary and secondary grid

the i-th primary and the j-th

secondary grid faces, respectively, and t}le ~i arc the length vectors of the primary or secondary

grid edges. ‘I’he material parameters &r, pr and o are assumed to be piecewise homogeneous in

both the z-direction as well as in the transverse direction. At the. intcrF~cc  of two unlike medium,

the parameters are assigned an average value, as described in Appendix A of [ 11.

Based on (2) and (~), it is recognized that the flL]x densities updated in (6) and (8) are normal

to the faces. I lowcver, the corresponding field intensities on the dual edges passing through

these faces arc not necessarily normal to the faces. As a result, the flux densities must be

projected onto the edges bc.fore the dual fields can be updated. Since only one component of the

field is locally known, an auxiliary operator must be introduced to perform the projection. To

this end, the projection operators implemented in [1] arc used to project the fields onto the dual

edge passing through the face.

l,et ~r be the normal area vector to a primary grid transverse face, and .? be the unit vector

along the dual grid edge passing through the fi~ce (Fig. 2). Using (6) the magnetic flux densities

projected onto the normals of all the primary grid transverse faces are updated, Subsequently,

for each face, a general flux density vector ~ is introduced. From (6), G c fiP is known at each

edge. In Fig. 2, the edge identified is bound by vertices 1 and 2, which is identified by the index

i = 1,2. l:ach vertex is also shared by two additional edges which share a common cell. Let j

represent one of these edges, where j = 1,2. q’he nor-ma] area vector to the j-th edge associated

with the i-th vertex is Nn,,. Subsequently, we define a general flux density vector ~i,j  to be the
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local estimate of the magnetic flux vector associated with lhc i-th vertex  and the j-th edge, where

;i,j is computed by solving the two-dimensional system of equations

6i,, ‘ND = 6 “ N,,
(9)

Gij. fiD. =G. NDl.) v

where the right-hand-side is known from (6). Subsequently, introducing the weighting

coefficient ‘i,j = ~. (fin x fill. ) , the flux density projectrd  onto the dual edge is expressed asLJ

~$w,  j(;i,,  ‘)

im=i=’  J=; ; . (lo)

D.4 ~
7

w, ;
i=] j=]

The field updates are then computed using (6)-(10). However, it is realized that computing the

parameters for these equations requires a significant number of floating point operations, leading

to a highly inefficient algorithm. However, by employing standard finite-element type

techniques, the coxnputational  efficiency can be greatly enhanced by treating these linear

operators as sparse rnatric:es.  To this end, (6)-(10) can be. expressed in reduced form as

Pf:+’l, ‘[~’:lk +z[~:+’”lk (11)

[1[f’:+ ’],+,,,  ‘[w,+,,, +T ;:: (12)

‘Ck>+l

[ 1
.=fi+ 1

~+1,2 = 
‘h, [B,n+l]k+ 1,2

(13)1

[}] 1 L+l/2  =  Q, [~:+1’21k+l/2E:’3’2 = +qm+]]k+j,’ (14)

[~~+’”lk ‘T[~:+l’21, +-+:’t,+,,,
[f$:+3’21k  ‘W:+3’21,

(15)

(16)

where the subscript k refers to the discrete height along the z-direction, 11 and B1 are the flux

densities, the ~‘s are diagonal matrices, and the T‘s are sparse matrices. Note that these

matrices are only associated with the two-dimensional $Tid since they are the same for all values

of k (inhomogeneities in material parameters are. easily built into these expressions). As a result,

the additional memory required to store these matrices is nominal.
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process on a single  processor of the computer is P. In fact, due to serialisrn,  the speedup  will

always be less than P. Thus the principle objective i]l designing a parallel algorithm is to

minimize the amount of serialism  in the parallel algorithm. Serialism  can be defined as

computation that would be better done on a uniprocesso]  system than a parallel system. It also

includes additional computation that must be performed by the parallel algorithm, but is not

required by a sequential algorithm. Some examples of tasks that lead to serialism are: 1) load

imbalances, 2) interprocessor  communication, 3) latency, 4) synchronization, and 5) redundant

computation. in a parallel system, the total computational time to complete a global task is equal

to the time required by the slowest  processor to complete its local task. Therefore, it is important

to evenly distribute the work effort among all the processors, namely the work load must be

balanced. In contrast, load imbalances lead to processor idle time and reduce parallel efficiency.

lnterprocessor  communication, i.e., message passirlg,  introduces additional effort that is

required by the parallel algorithm which is nc)t performed by the sequential algorithm, and it

leads to the degradation of the parallel efficiency. The computational time required to perform

an interprocessor  communication can be clivided  into two parts, 1 ) the time it takes to initiate the

communication, which is referred to as the kuency  lime, and 2) the tin~e/byte required to transmit

a data packet between two remc)te processors. In most tightly coupled distributed-memory

multiprocessor computers, the time required to transmit a byte of data is on the order of

nanoseconds. IIowever,  the latency time is typically on the order of tens of microseconds.

Therefore, it is much rncm profitable to send a small number of large data packets rather than a

large number of small data packets. Furthermore, since single floating point operations are

performed on the orders of nanoseconds, it is extremely important to maximize the ratio of the

time a processor spends performing flc)ating point operaticms  to the amount of time spent

performing interprocessor communication, Unfortunately, as the number of processors increases

for a fixed problem size, this ratio inevitably decreases, leading to t}]e degradation of the parallel

efficiency.
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Synchronization can also lead to serialism  in a parallel algorithm. This leads to processors

which are left idle while waiting for information from a remote processor. A good example of

this is a recursive algorithm, where a process on my processor is dependent on data from another

processor, whereas, another processor is dependent on my data still to be jmocessed, and so on.

Ilven though the work load may be balanced, the parallel efficiency can be extremely poor due to

the required synchronization.

Finally, redundant computation is computation done on a number of processors concurrently

that could have been done by a single processcm. Often, if the time spent doing redundant

computation is small, it is cheaper in terms of overall C}’U time to do it redundantly rather than

to have to perfoml  an additional interproccssor communication. Again, the reason being that the

latency time to initiate the communication will be on the order of microseconds, compared to the

nanoseconds required to pelform the floating-point operations. However, a substantial amount of

redundant computation can lead to degradation in parallel efficiency.

It is thus important to design a parallel algorithm which is load balanced, has a minimal

number of interprocessor  communications, minimiz.  cs the size of the data packets being

communicated, is asynchronous in operation, and minimizes the amount of redundant or serial

computation. To this end, the parallel PGY algorithm is based on a spatial decomposition of the

three-dimensional grid into contiguous, non-ovcrlappil)g  subdomains. The partitioning of the
(~ ‘

two-dimensional unstructured mesh is being performed using one. of twojdifferent  techniques: ,\

1 ) The Recursive inertia Partitioning (RIP) algorithm I I 1], which is a power of two algorithm

that is ideal for hypercube computers, and 2) the Greedy algorithm [ 12], which a non-power of

two algorithm providing a more general decomposition. Both algorithms are quite simple to

implement, and are computationally efficient even for large meshes. ‘l’he RIP algorithm has the

advantage that it minimizes the number c)f grid edges 011 shared boundaries, however, it typically

has 10 9% load imbalances in the partition. The Greedy algorithm has the advantage that it

partitions the mesh in a manner that is ideally load balanced, however, the number of edges on

shared boundaries is typically greater than that yielded by the RIP algorithm. Furthertnore, the
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Greedy algorithm can sometimes result in disjoint sub donlains  [ 12]. Ncvmtheless,  in Section V,

it is illustrated that the load balancing is more important than minimizing shared boundary

lengths, and the Greedy algorithm leads to improved parallel efficiencies. The spatial

decomposition along the third,  regular dimension is donr using a trivial partitioning scheme of

the regular grid.

Once the mesh is decomposed into subdomains,  one subdomain  is assigned to each processor.

The matrices in (11 )-(16) are then expressed as a subassembly of matrices, where each sub

matrix represents the LlpdateS  of the fields within each subdomain.  subsequently, the nlatrix

vector  products are simply expressed as

ZX =  
~~=,ZiXt (18)

where P is the total number of processors.

This approach has a number of advantages, The spatial decomposition is done in a manner

such that each processor performs roughly the same number of floating point operations each

time iteration, leading to a balanced parallel algorithm. Secondly, only the local matrices and

field vectors need be stored on each processor. This alp,orithm maximizes the ratio of

computation to communication leading to a highly scalable algorithm. This can be seen by
.

further decomposing Ai as

where z? are the rows of Ai associated with all field vectors inter-nal to the i-th processor’s
=shurtd .

subdomain, Ai,j are the rows of Ai associated wittl all field vectors in the i-th processor’s

subdomain  that lie on the bounclary  shared with the j- th domain, wld ~shurcd is the number of

processors that share boundaries with the i-th processor. Subsequently, local to each processor,

(18) is actually performed as

where RX is the receive operator, receiving the vector of data fronl tt~e jrh processor. The first
,, ‘j

two expressions on the righ(~hand+side  of (20) are done completely in parallel on each processor,
L.

.4
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and the final term requires interprocessor  communication. Since the RIP and the Greedy

algorithms both attempt to minimize the lengths of the shared boundaries, the ratio of

computation to communication is high, leading to a highly scalable algorithm as demonstrated in

Section V.

IV. The Vector algorithm

Almost all of today’s distributed memory parallel computers utilize RISC processors as central

processing units (CPUs). Many c)f the RISC processo}s  rely on vector pipelining to achieve
(,

maximum floating point operation speeds. They also rely on, high speed cache to reduce memory “1
\

access time. As a result, to optimize the processor floating point operation speeds, dominant

computational tasks must be vec(orized. Vectorization  is realized on the innem~ost  loops of any

multi-dimensional loop structure and can be achieved in an optimal manner when: 1 ) the inner

loops are truly vector operations and are not corrupted by function calls,  logical statements, or

indirect addressing, 2) the inner-most column irldex of lnulti-dimensions] arrays corresponds to

the index of the inner loop, ~) the length of the inner loop is equal to or greater than the optimal

vector length (typically determined by the vector length of a vector processor, or the cache size

of a pipelined or a super-scalar processor).

The matrices in (11)-(16) are assumed to be stored irl a compressed format, namely, only the

non-zero entries are actually stored and pointers are used to identify l}~e row and column number

of each entry. Thus, the matrix vector product perforined in (20) is performed using indirect

addressing, i.e., the effective index  of the vector x is determined by either a pointer, or an integer

array, and x is addressed in a random fashion. As a result, poor floating point operation will

result when performing the linear operations in (20) on RISC processors that have architectures

employing either vector units, pipelined floating point units, or even superscalar  floating point

pipelined  units. This appears to be predominately due to the inability to stream the vectors into

the local high-speed cache, and subsequently through the floating-point control unit.
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Vectorization  can be achieved, by exploiting the regulal ity of the sparse update matrices along

the vertical direction. Specifically, the operations dependent on the discrete index k correspond-

ing to the vertical z-direction can be placed on the inner loop of the matrix-vector product

operation. As a result, the indirectly addressed variables I)ecome constants within the inner loop,

and are addressed only in the cmter loop. This leads to a very efficient operation that has

increased floating point speeds on a RISC processor. As an examj>le,  Fig. 3 illustrates the

FORTRAN loop that is used to perform the update of the interior vertical electric-field

intensities, specifically from (14). It is assumed that the. secondary grid cells in the transverse

plane are arbitrary polygons, ancl each row has a random nurnbcr  of non-zero elements. To this

end, the pointer iez points to the first non-zero entry of the i-th row in the vectors aez and jez , jez

is the column indices of each entry of aez, and acz contains the non-zero entries of the matrix.

Also epsz is the inverse of the relative permittivity 10CH1 to the vertical edge. The inner loop,

loops lhrough  the vertical index k, and within this loop jez and aez are constants.

By exploiting the vectorization of the RISC processoI,  a substantial speedup can be achieved.

As an example, the CPU speed .VS. the vector loop lengths were measured on an Intel i860

microprocessor. The i860 is a 64-bit RISC processor, It has a peak performance of 80 MFLOPS

(Millions of Floating Point Operations per Second) siligle precision and 60 MFLOPS double

precision at a 40-MHz clock cycle. The i860 has a 4 Kb-yte instmction cache organized as a two-

way set-associative memory with 32 bytes per cache block. It also has a separate data cache

which is a two-way set-associative memory of 8 Kbytes. There are also two floating-point units

within the processor, namely, a multiplier unit and an adder unit, which can be used separately or

simultaneously under the coordination of the floating-point control unit. This design supports

dual operation floating point instructions such as “add-and-multiply” and “subtract-and-multiply”

by using both the adder and multiplier units in parallel. Vector c)perations  can be pipelined

through the floating point units yielding maximal performance.

The benchmarked performance of the FORH-?AN loop in Fig. 3 versus the vector length nz is

illustrated in Fig, 4 (Case 1). This was perforrnc(i using single precision floating-point



Paraliel PGY-Algorilhnl, S. Gedney & F. Lnn.~in~ 14——. — . . .——. — ——.

arithmetic. This is compamd to the case in which the two inner loops in Fig. 3 are reversed

(Case 2). Interestingly, as nz is increased, the performance of this loop decreases. Overall, this

illustrates that loops with indirect addressing cannot take advantage of vector pipelining.  This is

a problem that plagues many finite. element codes. An additional benchmark was performed to

vary the value of nnod (in Fig. 4 nnod = 1000). In both cases, the performance is effectively

independent of the length of nnod. These results are not illustrated here..

V. Numerical Results

A FORTRAN program based on the planar generalized Yee-algorithm has been developed on

a 32-node Intel iPSC/860 hypercube. This same program has been direct] y ported to the 512-

node Intel Delta Supercomputer,  a 2-processor Cray - YMP, and an 11P 720 workstation. The

program is interfaced with a commercial CAD software l)ackagc (SDRC I-D13AS)  running on an

HP 720 workstation. The CAD software is used to design and build the circuit models. II is also

used to generate the two-dimensional unstructured mesh via riutotnatic  grid generation

techniques. The node-based two-dimensional mesh is subsequently partitioned on the

workstation using either the Greedy or the RIP algorithms. Since the generation of the meshes of

very large models caJ~ bc extremely time-consuming and memory intensive, an automatic mesh

refinement technique has been implemented within the parallel algorithm. The refinement is

done in a fairly trivial manner, as illustrated in Fig. 5, and can bc done completely in parallel.

Furthermore, since it is a global refinement, a mesh partitioning does not need to be repeated.

A second-order absorbing boundary condition (A}IC) known as the dispersive boundary

condition [131 is used to update the fields on truncation boundary walls, minimizing any

nonphysical reflections. To maintain the second-order accuracy of the boundary condition,

two-dimensional mesh is padded with two layers of rectangular cells (this is done prior to

partitioning to maintain load balance of the parallel algorithm).

the

the

A number of numerical simulations have been run to validate the code and to demonstrate its

robustness [9]. As an example, consider a circular c}rlindrical  via through a ground plane, as

illustmted  in Fig. 6. The via connects two 50 Q microstrip  lines using a cylindrical post passing
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through a circular hole in a ground plane. ‘l’he two-dimensional mesh representing this geometry

is illustrated in Fig. 7. The mesh models the three-dimensional geometry as it is projected onto a

two-dimensional plane. Since there are conductors and dielectrics at different heights in the

three-dimensional model, each cell is assigned a material identification number.

Correspondingly, a table is built which identifies the discrete heights, thickness and properties of

conductor strips and material slabs.

Both the RIP algorithm [11 ] and the Greedy algorithm [ 12] were used to perform the spatial

decomposition of the mesh, As described in Section 111, the Greedy algorithm provides a better

load balance, while the RIP algorithm better minimizes the lengths of the shared boundaries.

Figures 8 and 9 illustrate t}le spatial decomposition of the two-dimensional quadrilateral mesh

illustrated in Fig. 7 into 32 subdomains using the RIP and Greedy algorithms, respectively. A

means of comparing the load balancing of the two al{:orithms, is to compare the maximum

number of cells and nocles  in a subdomain to the mil]imum  number. This is illustrated in

Table 1. It is seen t}lat t}le Greedy algorithm yields much more optimal load balancing overall.

However, the number of edges cm shared boundaries are greater in the mesh decomposed by the

Greedy algorithm than that decomposed by the RIP alp,orithm. 11) fact, observing Fig. 9, it is

fseen that one of the subdomains is even isjoint, e.g., it is bound by more than one closed (
oj,,::

{.

surface. Initially, there is some uncertainty as to whethel  the optimal load balance will result in a

more efficient decompositicm,  Or the minimized shared boundary ]engths.

The via was analyzed on a 32-node iPSC/860.  Each node of the iPSC/860 hosts a 40 MHz

i860 RISC processor and 16 Mb of memory. The two-dimensicmal  mesh in Fig. 7 was used, and

consists of 4867 quadrilateral cells. The three-dimensional mesh was 40 cells high along the

vertical direction. The full simulation required 4000 time iterations. The CPU times required to

perfoml the simulation versus the number of processors are illustrated in Table 2, comparing the

times that resulted from using the RIP and the Greedy al~orithms.  Clearly, the Greedy algorithm

results in improved CPIJ times. Figure 10 illustrates the speedups of the parallel algorithm,
.’

.? \again based on the RII] ancl Greedy decomposl)tlons. “l’he speedup here is defined as being the
L
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ratio of the CPU time required to execute the problem on P processors to that required by a

single processor. This is also compared to the ideal case of a linear specdup.  Excellent speedups

are observed over the 32 processors. Finally, the magnitude of the S-parameters are illustrated in

Fig. 11. These results are compared with [he measured results presented in [81 and those

computed using an orthogonal grid TLM method [Eswarappa, 1994 #89].

VI. Summary

In this paper, the parallel planar generalized Yee (PGY) algorithm was presented. Initially, it

was shown that by exploiting the planar symmetries of printed microwave circuit devices, great

savings in both CPU time and memory can be. achieved. It was also shown that significant

speedups in floating point operation speeds can be achieved by exploiting inherent vectorism in

the PGY algorithm due to the regularity of the grid along one dimension.

The parallel PGY algorithm presented was based on a spatial decomposition of the general

unstructured mesh. By treating the update matrices as subassemblies of matrices, a very efficient

parallel scheme was obtained. Two spatial deccmlpositions  were compared, the recursive inertia

partitioning (RIP) algorilhm  and the Greedy algorithm. The Greedy algc)rithm provides optimal

load balance, whereas the RIP algorithm more effectively minimir.cs  shared boundary interface

lengths. Through a numerical example, it was demonstrated that the Greedy algorithm provides

superior speedups. From this, it can be concluded that load balancing is extremely important,

and will lead to scalable parallel algorithms. Finally, it is demonstrated that the parallel PGY

algorithm has a high level of parallel efficiency and provides the means to efficiently and

accurately solve practical engineering prc)blems.
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Fig. 1 An example of the primary grid dcscribcd I)y similar two-din] cnsional  unstructured grids
cmcatcd in (1)c vertical z-dirw.lion in a regular sense.
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Fig. 2 Normal to a u-ansvcrsc  primary face, al Id a dual edge passing through [he. face
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do 10 i = l,nnod
do IOj = icz(i),iez(i+l)-1

j] =: jcz(j)
aj == aez(j)*codt
do 10 k = l,nz-1

ez(k,i) = ez(k,i)~ aj*h~(kjlj*e/1.~z(k,i)
continue

Fig. 3 ljoR’l”~AN loop performing the updale.  of tie ve.nical clccLric  field using (14).

—
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Fig. 4 MFLOPS .VS. number of cells in tic verlical direction recorded on a single 40 MH7
i860 RISC processor. Case 1 refer’s to the loop in Fig. 2, and Case 2 is the same update
with the two inner loops switched.
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Fig. 5 Rcfincmcnl  of Triangular and quadrilatc.ral  clmcnLs.
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Fig. 6 Cicorncwy of a cylindrical via lhrough H PEC grouncl  plane.
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Fig. 7 l’wodin~cnsiona] mesh repre.scnting  fllc cylindrical via
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Fig. 8 Spatial decomposition of the two-climcnsional  mesh using the RIP algorithm (32 sub
domains).
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Fig. 9 Spatial decomposition of the two-dimensional mesh using the Greedy algorithm (32
sub domains).
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RIP and the (kxdy spatial decomposition methods.
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Table  1.
I,oad Balance of the RIP and Greedy Algorithms

-——. -— .——. -

1{11’ Greed y
.—.

E

.—
P N,mz ~,m:NC N~mx : N.m;q ‘Nc :NC N~mx : N~min

-—
4867:4867 4988:4988 4R%T4*”;-”-” 4988:4988

1 -—— -—
2

2542:2325 2629:2414 ‘ — -

2 4 3 4 : 2 4 3 3 2 5 4 1 : 2 5 4 1
-—. -—

4
1353:1142 1421:1210 1217:1216 ‘- 1313:1289

-—— -—
8

661:571 743:621 6 0 9 : 6 0 8  ‘“ 670:662
_—— - — -

374:284 421:322 319:289  ‘ 384:341
16 -——

203:131 236:151 153: )51 190:177
32 -—— -— — .-.

Table  2,
CPU Times Recorded .VS. # of Procwsors  (P) on iPSC/860

for the Microstrip Via (4000 [ime iterations)

H
-—— -_—— ——. -.

P RIP Greedy-—— -———. — .

1
7936.0 7936.()

-——. -_—.
2

4224.0 4144.()
-——, -— — - -

4
2406.0 22)9.0

-—.
8

1301.0 12) 6.()
-—— — .

16
815.00 769.~()

-—— -—
5 2 0 . 0 0 384.00

32 ——. -——— —.. -—


